LEBT Beam Measurements

C.Y. Tan, P. Karns, D. Bollinger 04 Jan 2012

The LEBT

Z:LTRM*

Z:ATRM*D

Z:ATRM*U

Goal and Method

- Understand and model the LEBT line so that we can paint the strike zone when the RFQ is connected.
- Calculate
 - Corrector strengths as a function of current.
 - Solenoid focusing strength as a function of corrector current.
- Cleanest way is to have downstream solenoid OFF.
 - But we have problems with vertical wires in this case.

Elements to be calibrated

- 2 Solenoids
 - Sol1, Sol 2
- 3 sets of horz and vert correctors
 - Z:ATRMHU, Z:ATRMVU
 - Z:ATRMHD, Z:ATRMHD
 - Z:LTRMH, Z:LTRMV

Interesting Beam Features on the Wire

Sol 1 = 398A, Sol 2 = 261 A

Beam profile is **not** gaussian. It is quite flat at the top.

Flatness is REAL and predicted by Theory!

"Approach of a gas focusing system to steady state", E. Horowitz et al, Phys. Fluids B 1 (6), June 1989.

"Generalized Three-Dimensional Equations for the Emittance and Field Energy of High-Current Beams in Periodic Focusing Structures", I. Hofmann & J. Struckmeier, Part. Acc. 1987, Vol 21, pp 69-98.

Vertical Wires Hampered by Backscattering

Sol 1 = 455 A. Sol 2 = 0.

Beam is focused on wires with just the first solenoid.

Therefore, we can calibrate horizontal with solenoid 1 off but have to have solenoid 2 ON otherwise.

Horizontal Calibrations of Z:LTRMH and Z:ATRMHD

Dipole Current (A)

Z:LTRMH: 0.69 deg/A

Z:ATRMHD: 0.48 deg/A.

Note: affected by upstream focusing.

3

TD Measurements

magnet	PSDC001		PSDC002		PSDC003		PSDC004		PSDC005	
	Horizontal <u>Bdl</u> (gauss·m)	Vertical <u>Bdl</u> (gauss·m)								
@ -2 A	8.93	8.73	9.13	8.80	9.06	8.75	8.95	8.74	9.03	8.84
@+2 A	7.36	7.97	7.59	8.05	7.62	7.91	7.48	7.95	7.54	7.99

Z:ATRM*U

Z:LTRM*

Z:ATRM*D

Bdl's are not symmetric about +/-2A. (residual magnetization effect)

Z:ATRMHD/Z:LTRMH @2A = 8.95/9.06 = 0.99

Measured with beam deg/A = 0.48/0.69 = 0.70

Focusing of solenoid affects apparent strength of trims.

In simulations, assume that the strengths are the same in both planes. For simplicity, adopt Z:LTRMH values for all trims.

Solenoid 1 Focusing on Wires

460A is minimum size.

From this value can calculate object distance, given image distance and focal length (calculated from formula with measured $\int B^2 dz$. = 22 cm)

Image distance is about 7cm=2.75 inches from the edge of the cube.

Modelling the line ...

Use transport matrices.

- (1) Hard edge model for solenoids. (Does not work very well!)
- (2) Corrector calibrations

Painting the Strike Zone (Successful BUT ...)

Without extra lens at the end of solenoid 2

Z:LTRM* fit going through solenoid 2 looks ok.

DOES NOT FIT Z:ATRM*D at all!

Addition of extra lens gives much better results

Fits better, (note scale), but not perfect.

Lens has focal length of 33 cm

What does addition of extra lens mean?

- More gas focusing than expected?
 - Function of beam size? Not seen when solenoid 2 is off. This is unlikely to be the cause.
 - Addition of Einzel lens chopper will show whether gas focusing is the cause.
- Poor modelling of the solenoid
 - Hard edge model → soft edge model does not fix problem.
 - Need to to Runge-Kutta particle tracking to see if this fixes problem.

Solenoid Effects: Measurement and

Conclusion

- Model is good enough for now to place the beam where we want
- However in the longer term
 - Improve with better solenoid model (Pat is going to work on this)
 - Check that Runge Kutta tracking produces the measured results.
 - Einzel lens experiments will preclude gas-focusing as the source of the problem.